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The hydrodynamic stability of a planar flame (deflagration) is determined by solving the complete sys-
tem of equations, including thermal conduction and energy release due to chemical reactions, for the
case in which the Lewis number is equal to unity. In the asymptotic limit of large-wavelength perturba-
tions, the developed theory provides a rigorous justification of the Darrieus-Landau assumption that the
flame-front velocity is constant, which is the necessary supplementary condition in the model of discon-
tinuous flame front. The analytical solution for the suppression of the flame-front instability is obtained
for an arbitrary activation energy. It is shown that the obtained solution does not depend on the specific
form of the energy release. The perturbation growth rate is also found numerically by solving the eigen-

value problem.

PACS number(s): 47.20.—k

I. INTRODUCTION

The stability analysis for many problems in hydro-
dynamics and plasma physics requires a solution of the
complicated system of equations including the energy
release due to reactions, dissipations, thermal conductivi-
ty equations, etc. The problem can be essentially
simplified if the characteristic scales of some processes
for the unperturbed flow are small in comparison with
the characteristic dimensions of the problem. In this
case, one may simplify the problem by regarding the thin
zone at the position where the large gradients of the vari-
ables are located (zone of the energy release, chemical re-
actions, temperature gradient, etc.) as a surface of discon-
tinuity of zero thickness. Thus formulated, the problem
of the stability can in a certain sense be separated from
the kinetic and/or transport problems and can be regard-
ed as the purely hydrodynamic stability problem of a sur-
face of discontinuity of zero thickness. A number of
boundary conditions (jump conditions at the discontinui-
ty surface) must be satisfied if one introduces a discon-
tinuity instead of the transition layer. As is known, the
necessary condition, that the solution for the flow with a
discontinuity exists, is provided by the so-called “condi-
tion of evolutionary” of the flow [1-3]. The point is that
any initial small perturbation is defined by some number
of independent parameters for the given flow. Its devel-
opment is governed by a set of the linearized boundary
conditions at the discontinuity surface. The evolutionary
condition is satisfied if the number of conditions at the
discontinuity is one greater than the total number of sim-
ple waves that can propagate out of the discontinuity sur-
face. In general, the boundary conditions at the discon-
tinuity surface can be divided into the basic boundary
conditions which follow from the conservation laws being
the integrals of the hydrodynamic equations, and the ad-
ditional boundary condition which does not follow from
the hydrodynamic equations [1-3]. This additional
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boundary condition can be obtained by solving the com-
plete problem, including the processes inside of the
discontinuity zone. In some sense the supplementary
boundary condition guarantees the existence of the sta-
tionary solution for the flow with the discontinuity sur-
face. For example, in the problem of flame propagation,
regarding the flame front as a discontinuity surface, this
additional condition is the given velocity of the flame
front. This velocity can be found in turn as the eigenvalue
of the complete combustion problem, including the mech-
anism for flame propagation, i.e., thermal conduction and
energy release in the chemical reaction [4].

It is obvious that the stability problem for a flow with a
discontinuity surface also requires an additional condi-
tion on the perturbed hydrodynamic variables if the addi-
tional condition is required for the unperturbed steady
flow according to the condition of evolutionary of the
flow. Sometimes this additional condition can be assumed
phenomenologically from physical considerations. A
well-known example of such a problem is the stability
problem of the planar flame front [5,6]. Another prob-
lem, where similar difficulties arise due to the lack of the
boundary condition, is, for example, the stability analysis
of ablatively accelerated laser targets in the approxima-
tion where one model the ablation front by a discontinui-
ty. Thus formulated, this problem leads to a similar
difficulty: the number of boundary conditions at the ab-
lation surface is insufficient to determine the solution.
Many papers have been published [7-10] in which at-
tempts have been made to resolve the problem and de-
scribe the suppression of the Rayleigh-Taylor instability
due to the mass flow across the ablation front. There are
many other problems of similar nature: ionizing shock
wave in a magnetic field [2], phase transition wave, etc.
In this paper a rigorous solution is obtained for the prob-
lem of the hydrodynamic stability of a flame front by in-
tegrating the complete set of equations including the
chemical kinetic of the reaction and the thermal conduc-
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tion of the gas which are responsible for the flame propa-
gation. The obtained solution demonstrates the rigorous
approach to problems of a similar nature.

Many papers have been published (see, for example,
Refs. [5,6,11-18]) starting from the first papers by Dar-
rieus [5] and Landau [6] where authors made attempts to
solve the problem of the flame stability. However, all au-
thors used models which included an unjustified assump-
tion. Since in the majority of situations of practical in-
terest the thickness of the combustion zone A=y, /u, is
small in comparison with the characteristic dimensions of
the problem (y, is the thermal diffusivity of the gas and
u, is the flame speed relative to the original gas), the
purely hydrodynamic problem can in a certain sense be
separated from the chemical kinetic problem, and the
flame can be regarded as a surface of discontinuity of
zero thickness (a flame front), separating the combustion
products and the unburnt gas mixture. Thus formulated
the stability problem of the flame front was solved by
Darrieus and Landau who used an additional assumption
that the normal propagation velocity of the flame relative
to the unburnt gas remains unchanged in the presence of
perturbations. Their solution for the growth rate of per-
turbations o as a function of the wave number k& =27 /A
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where ©,=T,/T,=p,/p, is the thermal expansion the
gas undergoes in the flame, i.e., the ratio of the tempera-
tures (densities) in the gas ahead of the flame front (sub-
script 1) and behind the front (subscript 2). This result
means that a thin planar flame front is absolutely unsta-
ble to an arbitrary perturbation which bends the flame
front. In fact, this result is correct only for long-
wavelength perturbations, in the limit A>>A and the
strong decrease in the growth rate of the instabilities
must occur at least around A=A. On the other hand, ex-
periments reveal that the instability growth rate is sub-
stantially less than that of Eq. (1) even for fairly long
wavelengths A~10%A >>A. Since result (1) contradicts
strongly the experimental facts, many papers have been
published in which attempts have been made to resolve
this contradiction. To discuss them in detail would take
us far outside the scope of the present work. We restrict
ourself to mentioning the paper [12] where the phenome-
nological assumption has been done so that the flame ve-
locity relative to the unperturbed gas depends on the
front curvature. Such a dependence of the flame velocity
was associated with the transverse diffusion and the
thermal conductivity and yielded the phenomenological
correction terms for Eq. (1). A more consistent approach
to the problem was developed in Refs. [14—-18] where au-
thors considered the problem by solving equations in-
cluding the thermal conductivity equation and diffusion.
However, all authors considered the case of the infinite
activation energy E /T, >>1 that, in turn, allowed them
to regard the zone of the chemical reaction as a surface of
discontinuity of zero thickness (inner discontinuity sur-
face). Similar to the pure hydrodynamic model, one addi-
tional boundary condition on the inner discontinuity sur-

face has been introduced a priori in these models. First,
the problem of the boundary conditions for the inner
discontinuity surface (front of the chemical reaction) was
treated in [19] (Barenblatt and Zel’dovich). These authors
assumed that the concentration @ and the temperature
perturbations 7 are continuous and the reaction rate de-
pends on the temperature as exp(—E /T). The last as-
sumption means the following estimate: A(dT /dz)
~(E/T,)T. Because the thickness of the reaction zone
is of order (T, /E)A, the assumption that T is continuous
is a contradiction. Attempts to avoid this contradiction
were made in [20,21] where instead of the real depen-
dence for the rate of chemical reaction authors used an
artificial assumption about the reaction rate, they used
the expression A exp(H /2), where H is the enthalpy, in-
stead of the realistic strong dependence. Their solution
implied the assumption that the perturbations do not
change coefficient 4 and that it is the same as it is for the
steady flow. However, in general, the jump conditions
for the perturbed values do not follow from the jump
conditions for a steady flow. Furthermore, it can be
shown that the condition that the perturbed temperature
T and concentration @ are continuous (used, for example,
in [18]) contradicts the linearized equations of thermal
conduction and diffusion inside of the reaction zone. The
exception is the particular case when Le=1, T=0, and
a =0 in the inner discontinuity surface. In this particular
case the solution obtained in [15-18] for the infinite ac-
tivation energy is in agreement with the rigorous solution
obtained in this paper.

In this paper a complete rigorous solution is obtained
for the problem of the flame stability, including the
chemical kinetic of the reaction and the thermal conduc-
tion of the gas. It is shown that in the limit of long-
wavelength perturbations (k —0) the condition, that the
flame velocity relative to the unperturbed gas remains un-
changed, follows from the complete system of linearized
equations. A solution of the stability problem is obtained
for the case Le=1 and for an arbitrary activation energy
in explicit analytical form; the numerical solution of the
problem is presented. The obtained analytical solution of
the problem does not depend explicitly on the particular
function of the energy release and can be easily general-
ized for the wide class of similar problems. For the
infinite activation energy the obtained solution is in
agreement with the results of papers [15-18] for the case
Le =1.

In Sec. II the starting equations are presented and the
stationary solution is determined. In Sec. III the eigen-
value problem for small perturbations is formulated. The
equations and boundary conditions for the perturbations
are derived. In Sec. IV the solution is obtained in the
limit K —O0, the supplementary condition that the flame
velocity remains unchanged, and the asymptotic expres-
sion (1) for the growth rate are rigorously justified. In
Sec. V the reduction of the growth rate due to thermal
conduction is considered and an expression for the
“cutoff”” wavelength at which the growth rate vanishes is
obtained. The numerical solution of the problem is
presented in Sec. VI. We conclude in Sec. VII by discuss-
ing the analytical and numerical solutions of the problem.
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II. STATIONARY SOLUTION OF THE PROBLEM
OF THE FLAME PROPAGATION
IN THE SLOW-COMBUSTION REGIME

We consider the problem of a slow-combustion wave,
taking into account the structure of the transition region
(the combustion zone) of the flame front in the case most
often encountered in practice, in which the Lewis number
satisfies Le=pc,D/k=1, where D and « are the
diffusivity and thermal conductivity of the gas, c, is the
specific heat at constant pressure, and p is the gas densi-
ty. Since the velocity of the flame is small in comparison
with the sound speed, the flow can be treated as isobaric.
It can be shown [4] that the equality of the diffusivity and
thermal conductivity implies that for the steady flow the
temperature and the concentration of the fuel mixture
have similar profiles, so that the thermal conduction and
diffusion equations reduce to a single equation. This as-
sumption is not essential from the physical point of view;
it is equivalent to the assumption that the fuel mixture
consists of gases with similar molecular weights and that
the actual combustion process can be accurately de-
scribed by a single simple reaction.

Under these conditions the system of equations
describing subsonic (M =u /V'yP/p<<1) flame propa-
gation takes the form

%5;—+V-(pu)=0 , )

p%—ltl+(pu-V)u+VP=0 : 3)
aT _

P, -a—t--i-u-VT =V-«(«kVT)+QWI(a,T), (4)

where P =(y —1)c,pT is the gas pressure; ¢, and c, are
the specific heats at constant pressure and volume;
Y =c,/c, is the ratio of specific heats; Q is the heat and
W(a,T) is the rate of the chemical reaction; and a is the
concentration of the reacting mixture.

Assuming the Arrhenius law for a first-order chemical
reaction, taking into account the similarity of the temper-
ature and the concentration profiles for the steady flow,
and assuming that this reaction goes to completion
within the combustion zone, i.e., T, =T, +a1Q/c1,, we
have

ow—L%
r
where E is the activation energy of the chemical reaction
and 7 is the time dimensional constant of the reaction.

Let us consider one-dimensional planar flow with the z
axis parallel to the direction in which the flame is propa-
gating. In the comoving system of coordinates at
z =— o a one-dimensional stream of unburnt gas of den-
sity p; flows toward the combustion zone with the veloci-
ty u,;, while at z=+ o the combustion products flow
away with a density p, and velocity u,,. For the assumed

steady subsonic flow with Mach number M <<1 the fol-
lowing obvious constants of motion hold:

(T,—T)exp(—E/T), (5)

pu, =const , (6)

P=const . (7)

Let us go over to dimensionless variables, scaling all
quantities with their values at z = — «. When we include
Eqgs. (6) and (7), setting ©=T /T, we obtain

Pr_ Y% T

=—=0. (8)
P Uz T,

The temperature plays the role of an eigenfunction of
the eigenvalue problem determined by Eq. (4) together
with Egs. (6) and (7) and the corresponding boundary
conditions. The eigenvalue determined by the boundary
conditions is the flame speed. In solving Eq. (4) it is con-
venient to introduce the dimensionless activation energy
&=E /T, and the dimensionless position £=z /A, where
A=k/(pc,u,;) is the thickness of the combustion zone.
Then we can introduce the eigenvalue A=A/(u,;7). In
terms of these variables Eq. (4) takes the form

d*e de
e —d—g—A(l—ez/O)exp(—G/e)=0 ) 9
with boundary conditions

1 for {—»—

=16, for é—+ . (10)

As is known, a solution of Egs. (9) and (10) exists and is
unique for an appropriate temperature cutoff in the ener-
gy term [4].

For estimates we can use a simple analytical solution
for the temperature profile and the flame velocity ob-
tained by Zel’dovich and Frank-Kamenetskii (ZF) (see
[4]) for the asymptotical case of infinite activation energy
6— . In terms of the dimensionless variables intro-
duced above the temperature profile in this case becomes

1+(0,—1)exp(§), £<0

(&)= e,, £>0 (11
and the corresponding eigenvalue is
6(0,—1)?
AZF=—TG3——exp(6’/62) . (12)
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FIG. 1. Scaled profiles of the dimensionless temperature in a
slow combustion wave: (1) 6=70, ©,=8, InA=14.3; (2) 6=42,
6,=6, InA=11.7; (3) §=21, ©6,=3, InA=10.4. Trace (4) cor-
responds to the solution (11).

©-1/(e,-1)
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Figure 1 displays plots of the quantity (6—1)/(0,—1)
for a slow-combustion wave with different values of ac-
tivation energy and the thermal expansion; trace (1) is for
6=170, 6,=8, InA=14.3; 2) 6§=42, ©,=6, nA=11.7;
(3) 6=21, 6,=3, InA=10.4. Trace (4) corresponds to
the solution (11). It follows from Fig. 1 that the thickness
of the flame front (the region in which thermal variation
occurs) is of order unity in these dimensionless variables
and varies weakly as a function of the activation energy
and the thermal expansion coefficient ©,.

III. LINEARIZED EQUATIONS:
EIGENVALUE PROBLEM

Let us consider the eigenvalue problem associated with
infinitesimal perturbations about a steady planar flame.
By virtue of the flow symmetry the perturbations can be
taken in the form

p=p(z)explot +ikx) , (13)

where k is the wave number, o is the instability growth
rate, and @(z) is the amplitude of the perturbed variable.
Since we are interested only in the unstable modes, in
what follows we assume Re(o)>0. This implies that the
perturbation amplitudes are much larger than their initial
values after sufficient time has passed. Hence, we can ig-
nore terms associated with initial transients in compar-
ison with the asymptotic behavior of the eigenfunctions.
For the subsonic flow, the perturbed density and tem-
perature to within terms of order M? are related by

p/p=—T/T. (14)

It can also be shown (see Appendix A) that when the con-
dition Le =1 holds, the perturbations @ in the fuel con-
centration are related to the temperature perturbations
through

(15)

_ P F
a=——T
Q

When we use Egs. (14) and (15) and relation (8), the

linearized equations (2)—(4) for the perturbations take the
form

52 ~Ks§ KE (16)
%:-Ksew? 2K6j—K9O , (17)
E’d%_—xsj , (18)

;%JFKSQH( e, 19

where the following definitions have been introduced for
the dimensionless perturbations of the temperature ©,
the transverse velocity 7, mass flow 7, and the dynamic
pressure 7:

~ T u
o=1 | v=i=x
T, Uz
- ) (20
. pu,tpi, » P+pu;+2pu,i,
.]: = bl
Ptz P
along with dimensionless quantities
K=kA, S=-2 @n
ku,,

for the wave number and the growth rate, respectively.

The boundary conditions satisfied by Egs. (16)-(19) re-
quire that all the perturbed quantities vanish for £ — =+ .
The boundary conditions can be imposed at finite dis-
placement £=¢&, and £=§,, which are far enough from
the combustion zone that at &, and &, the flows of the fuel
mixture and the combustion products, respectively, can
be regarded as uniform. The conditions under which the
unperturbed flow can be assumed to be uniform, i.e.,
6=0,=1 for £Z§,, and ©=06, for £=¢,, are deter-
mined by the inequality

id(lne
| dé |

In the regions of uniform flow for £ <£&; and £>§&, the
solutions of the linearized equations can be expressed as a
superposition of exponentials of the form

<<min{1,K} for £=§,,§, . (22)

plE)=pexp(ué) , (23)

where the argument of the exponential in (23) is chosen
to satisfy u >0 for £ <&, and u <0 for £> §£,.

Substituting the perturbations in the form (23) in Egs.
(16)—(19), we obtain for the uniform flows

(W2—K)(KS+u6)j=K(KS/0+p)(uS/0+K)6 ,

(24)
A 6
wr— o 62—6-(92—6)
Xexp(—6/0)—K?—KS/6 (6=0. (25

From the fact that the solutions must vanish in the uni-
form regions at £— + oo, we find the following solutions
of Egs. (24)-(25).

Ahead of the combustion zone, for £<§&;: acoustic
mode, p=,, u=K >0,
J(E)=] exp(KE) , T (E)=—] (&),
J~ 5 §~ (26)
P(&)=—(S—1)j(&), 6,(5)=0;

thermal mode, =@, p=pr=1+1/T+SK +K2>0,

~ _ 1 _
HE)=Orexpurt) , Pr(f) KZL—SK—ZGT@) ,
@7
_ K+urs _ Kup+KS _
JT(§)=K'2—GT(§ , UT(é‘)—'—"z—TeT(g) .
HT— ur—K

Here we have used the fact that for §— — o we have
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©,=1 and exp(— &) =0.
Behind the combustion zone, for £>&,:
mode, p=¢,, u= —K,

JE)=J,exp(—KE), 7,(£)=6,],(&),
P(E)=(S+6,)],(&), 8,(6)=0
vorticity mode: $=¢,, u=—KS/6,,
J&)=],exp(—KSE/©,) , U,(&)
P£)=20,j,(£), ©,£6)=0
thermochemical mode: =9,,

1|1 KS
I tig £S A
2 |4 o, "o, P~

acoustic

(28)

=57,(8),
(29)

172
6/0,)| <o,

B=pe=

K KS+pu.6,

ec(g)zecexp(.u‘cg)’ B'c(g)z_—e_z 'ug_Kz ec(é-)’

K K&,tuS
]c(é')—'—z—“—_—z-ec(é') , (30)

The boundary conditions for Egs. (16)-(19) at £=¢,
and £=§, are that the solution at the positions &; and &,

is represented by a superposition of the eigenfunctions
(26), (27), and (28)-(30), respectively,

¢(§l)=¢s+¢T > (31)
¢(§2):¢a+¢v+¢c . (32)

Equations (31) and (32) constitute three algebraic equa-
tions for the components of the functions §(&,;) and two
equations for the components of the functions @(&,). The
system of Egs. (16)-(19) together with the boundary con-
ditions (31) and (32) completely specify the eigenvalue
problem for the stability of a steady planar combustion
wave against perturbations of the form (13).

IV. THE FLAME FRONT AS A SURFACE
OF DISCONTINUITY: INSTABILITY AGAINST
LONG-WAVELENGTH PERTURBATIONS

Let us consider the perturbations of the wavelength
much larger than the flame thickness K << 1. In this sec-
tion we shall show that the Darrieus-Landau supplemen-
tary condition for the discontinuity model is the rigorous
consequence of the complete spectral problem (16)—(19),
(31), and (32).

For perturbations of long wavelengths the different
modes (26)-(30) vary on quite different length scales.
The characteristic length scales of the hydrodynamic
modes @, (&), §,(£), P,(&) are of order K ~!, while for the
thermochemical modes @1(£) and @.(§) these scales are
comparable with the size of the regions of thermal con-
duction and reaction, i.e., smaller than or of order unity
in dimensionless variables. Because the thermal modes
decay rapidly as a function of distance from the combus-

tion zone, the boundary conditions imposed on the per-
turbed hydrodynamic variables Jj, 7, 2 depend only on the
structure of the hydrodynamic modes:

,=—J,, P,=—(8—1)j, (for =&, (33)
v,+P,—(S+20,)7,=0 (for £=§,) . (34)

The boundary conditions for the perturbed temperature
© and its derivative d© /d§ are defined by the thermo-
chemical modes; they are required to vanish exponential-
ly over the energy release and thermal conductivity re-
gions.

Let us consider the solution of Egs. (16)-(19) with the
boundary conditions (33)-(34) in the long-wavelength ap-
proximation. We write down Eq. (19) for the perturbed
temperature in the form

6

F[8]= ;—+KS—+Ke, (35)
d§
where
d> d A
F P o7 (027 6(6,~0)]exp(—6/0) .
(36)
Note that
de
F dE =0. (37)

It can be shown (see Appendix B) that the first and
second terms on the right-hand side of Eq. (35) are of the
same order, i.e., in the limit K —0 the solution of (35) to
zeroth order of X is

= do

which obviously satisfies the boundary conditions im-
posed on © and d© /d&. Expression (38) means that the
flame is shifted in the £ direction by an amount 8= .
Using formula (38) for the perturbed temperature, we ob-
tain the integrals of Eqgs. (16)—(18) to within terms O (K):

- = o0—1

v -1 3
J—Ji1=KS&r o (39)
P=P, . 41)

Substituting j from Eq. (39) on the right-hand side of Eq.
(35) and taking into account the terms which are first or-
der in K, we find

F[®)=(KS+],/60)8 . (42)

The function ®=¢,d O /d£ is the eigenfunction of (42)
for the eigenvalue KS +j, /£, =0; it is the unique eigen-
value for which instability can develop (Reo > 0).

Thus we obtain the condition which relates the ampli-
tudes of the perturbations j; and {7,

The consistency conditions (39)-(41), related to the
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downstream £=£§,, together with (33)-(34) and (43), yield
the dispersion relation (1) for the perturbation growth
rate

1

0,+1— -
2 62

— g — e2
° ku, ©,+1

1/2
—1 } . (44)

The physical content of this long-wavelength approxi-
mation becomes evident if we write down relations (43)
and (39)-(41), related to the downstream, in dimensional
variables,

pruztpiity—p106=0, (45)
[pu, +pu,]—0oélp]=0, (46)
(@, +ikEu,]=0, 47)
[(P+pul+2pu,u,]=0, (48)

where [¢]=1,—
across the layer
§=—CrA.

It is clear that conditions (46)—(48) represent the
matching conditions which follow from the conservation
laws if we regard the transition layer [£,,&,] as a layer of
zeroth thickness, i.e., a surface of discontinuity. Hence, §
is nothing else but the small displacement of the surface
of discontinuity in the z direction, and Eq. (45) is the
Darrieus-Landau condition that the normal velocity of
the flame front is unchanged [1]. Indeed for an in-
compressible gas p; =0 and Eq. (45) goes over to

i,,=d¢/3t =0 . (49)

¥, represents the change in a quantity
[£5,€6;] and we have introduced

V. THE SUPPRESSION OF THE FLAME INSTABILITY

The expression (44) is the first-order term in the power
series expansion in K of the perturbation growth rate. In
this section we obtain the expression for the growth rate
within the second-order terms in K.

When we take into account relation (43), we see that
the function (38) is a solution of Eq. (35) to within terms
of order K2. Writing down the integrals of Eqgs. (16)—(18)
to within terms ~ K ? we have

¢ 2s,ve,+1-1/6,

2S,+6,)

Since in the points &,,§, the flow can be treated as uni-
form, we can replace the coordinates by the infinite coor-
dinates — o and + o in all integrals of (58). It is worth
emphasizing that the results (57) and (58) are independent
of the particular form of energy release (5), that’s why
they are valid for any activation energy.

For the case of infinite activation energy using expres-
sion (11) we obtain

1+(§>—(1+So)<-é—+1(§)>

-~ 0—1 £Uo
J=j1+KS&r o _nglgd"], (50)

e T ¢ Do £
v——jl—Kgr(e—n—stng—dwK fgl?’odn
[
- 5
2Kf§16]0d17, (51)
—Kngfodn—K féﬁodn ; (52)

where j, Uy, and P, are the zeroth-order terms in the ex-
pansion of j, ¥, and ? in powers of K, defined by
(39)-(41), including the boundary conditions (33). Substi-
tuting j from (50) on the right-hand side of (35) we find

F(®)=[(1—KE&)],/Er+SK1O+K*f(£)6, (53)

P=—(S—1)j,

where

f(§>z1—si+9—eil—§—(s+1)1(§> ,

§m dO de
fE o dn (54)

Equation (53) can be reduced to an equation with a Her-
mitian operator by means of the substitution
O =1 exp(£/2) (see Ref. [4]).

If we treat the term K >f(£)© as a small correction and
use the standard techniques of perturbation theory em-
ployed in quantum mechanics [22], we find to within
terms of order K2

(1—KE&)j,+[SK +K*(f)]&r=0, (55)

f;f(g )(d©/dE) expl—E)dE
1 z .
f (dO/dE exp(—E)dE

Writing (50)— (52 at the point £§=§, and taking into ac-
count (33), (34), and (55), we find

S=S,(1—-K/K,), (57)
where S, is defined by Eq. (44) and

(56)

+(S2+28,0,+20,)J (£ f n—dn
(58)
L (0,—1)
25,V 6,+1-1/6,
S3(0,+1)+45,0,+20
x 11+ 2 072" =2 In(e,)
(©,—1)
(59)
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In this particular case the expression (59) coincides with
the results obtained in Refs. [15-18].

The value of K, slightly depends upon the thermal ex-
pansion factor ©, and the approximate value is K, =0.3,
for example, from (59) K_.=0.31 for ©,=6; and
K.=0.28 for ©,=4. Thus, the length scale of the fastest
perturbations is A, =47A /K ~40A, which is about two
orders of magnitude greater than the flame thickness.

VI. NUMERICAL SOLUTION
OF THE EIGENVALUE PROBLEM

For general situations the stability problem for the
flame with complicated chemical and transport processes
can be solved only numerically. In this section we obtain
the numerical solution using the method which can be
easily generalized for a more sophisticated system of
equations. The numerical solution of Egs. (16)-(19) for
the eigenvalues with the boundary conditions (31) and
(32) was found by iteration. For a given approximate
value S =S, the system of differential equations (16)-(19)
was integrated twice over the interval [£;,£*] with
boundary conditions @,(§;)=®; and $,(§,)=@r, and
three times on the interval [£*,£,] with boundary condi-
tions @3(£,)=®,, P4(6,)=9,, Ps(§,)=¢.. Then, a new
approximate value S =S,,, was found by Newton’s
method,

S, +,=S,—D(S,,£*)/(3D /3S) , (60)

where

D (S,&)=det[®,(£,8),9,(£,8),93(£,5),P4(&,5),95(E,S)] ,
(61)

and the derivative in the denominator is approximated by
a finite difference.

This method of calculating the eigenvalues is based on
the fact that the desired eigenfunctions must be expand-
able at £=¢£, in the modes @, and @, and at £=§, in
terms of the modes §,, @,, §., respectively. In other
words, the solution represented as the superposition of
the functions @, and @ at £=§, must go over to a solu-
tion that can be represented as a superposition of the
functions @,, @,, @, at £=§&,. This requirement reduces
to the condition that the determinant (61) vanish at any
point in the interval [£,§,].

As the point £* where the solutions from the left and
the right are “matched” we used the point corresponding
to the maximum heat production rate in the thermal con-
duction equation. This choice of the matching point en-
sures the greatest accuracy in finding the eigenvalue,
since in both cases the integration from the points {=§;
and £=¢, is along the attractive trajectories.

Eigenvalues of Egs. (16)-(19) can also be sought in the
complex plane. The calculations show that this problem
has no complex eigenvalues.

The results of the numerical solution of the problem
are shown in Figs. 2 and 3. Figure 2 shows the calculated
instability growth rates, scaled by the corresponding
value given by Eq. (1), as a function of the perturbation

S/S

05 3

TTTT T T[T T TT

FIG. 2. Scaled growth rate o /(ku,S,)=S/S, for the flame
instability as a function of the dimensionless wave numbers for
the unperturbed flows in the flame shown in Fig. 1. The num-
bers labeling the traces in the figure correspond to the tempera-
ture profiles in Fig. 1.

wave number. This figure shows clearly that the instabili-
ty growth rates are in a good agreement with the
Darrieus-Landau solution (1), independently of the ac-
tivation energy and the thermal expansion factor. It
should be noted, however, that a marked deviation in the
growth rate from the value given by Eq. (1) occurs even
for A > 100A, while for A=~20A the growth rate vanishes.
The calculations reveal that, to within the accuracy of
the numerical method, the growth rates depend weakly
on the activation energy and the thermal expansion fac-
tor. Figure 3 shows the dimensionless growth rate
oA/u, as a function of the wave number K for the
different expansion factors and activation energies corre-
sponding to Fig. 1. The results of the numerical calcula-
tions shown in Fig. 3 demonstrate good agreement with
the analytical solution Eq. (58).
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FIG. 3. Dimensionless growth rate as a function of wave
number for the unperturbed flows shown in Fig. 1.
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VII. CONCLUSION

The complete rigorous solution is obtained for the
problem of the flame stability, including the chemical
kinetic of the reaction and the thermal conduction of the
gas. It is shown that in the limit of long-wavelength per-
turbations (k —0) the condition that the flame velocity
relative to the unperturbed gas remains unchanged fol-
lows from the complete system of linearized equations.
Solution of the stability problem is obtained for the case
Le=1 and for arbitrary activation energy in explicit
analytical form and numerically. An obtained analytical
solution of the problem does not depend on the particular
function of the energy release and can be easily general-
ized for the wide class of similar problems. For the
infinite activation energy the obtained solution is in
agreement with the results of the papers [15-18] for the
case Le=1. The significant reduction in the instability
growth rate relative to the values predicted by Eq. (1),
even for perturbations with wavelength much greater
than the thickness of the combustion zone, causes an in-
crease by about two orders of magnitude in estimates of
the length scales of the fastest perturbations. One would
also expect that for flames with the cellular structure, the
scale of the cells which arise in the late nonlinear states
should be comparable with the wavelength of perturba-
tions corresponding to the maximum growth rate shown
in Fig. 3.
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APPENDIX A
From the equation for the fuel concentration,

p%%+phrVM=V4pDWﬂ—a€emﬁ—E/RTL (A1)

and the thermal conduction equation

2 exp(—E/RT) ,
7c,

LT |44

aT
—+pu-V)T=V-
P, p(u-V) .,

(A2)

taking into account the condition Le=pc,D /k=1, we
have

pc, a +pc (uw-V)H =V-(kVH) , (A3)
where H =c,T'+aQ is the enthalpy.
The lmearlzed equation for the infinitesimal H is
2
Kddzlj =puc P(fz’ +(kk? +pc, o)H . (Ad)

Multiplying (A4) by dH /dz, integrating from z = — = to
z = o, and using the condition H(+ 0 )=0, we find

I R

Since we have Re(a)~> 0 and dg/dz <0, the relation (A;)
can hold only for dH /dz=0, H=0, i.e., a=—(c,/Q)T,
QED.

2—£dz. (AS)

APPENDIX B

We show that j(d©/d&), and SKO in Eq. (35) are of
the same order. Assume that

Sk® <« 749 (B1)

dé
Then from Egs. (16)-(18) in the region §, <& <§,, to
within terms of order «j, we deduce the relations

i=ji (B2)
5=0, , (B3)
P=P, . (B4)

Substituting (B2)-(B4) in (33)-(34) we find
S=-0,<0,

which contradicts the assumption S > 0.
Reversing the inequality (B1),

6 __-do

K B5
S >> j—— dE (B5)
we find from (19) to within terms of order SK©
d*6  de o 6 |9
- — — |—=-1 —-&6/0
T AB, o o, expl( /9)
6
=SK— . B6
o (B6)

This equation has no positive eigenvalues (see Ref. [4]).
Thus, positive eigenvalues S >0 are possible only for
SK©~j(dO/d§), QED.
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